Good point sets and corresponding weights for bivariate discrete least squares approximation*
نویسندگان
چکیده
An algorithm is presented to compute good point sets and weights for discrete least squares polynomial approximation on a geometry Ω ⊂ R2. The criterion that is used is the minimisation of the Lebesgue constant of the corresponding least squares operator. In order to approximate the Lebesgue constant, we evaluate the Lebesgue function in a point set generated by a refinement method that is based on Delaunay triangulation. The algorithm is greedy in the sense that points are added where the Lebesgue function is largest. It also uses a new updating algorithm for the weights such that the corresponding Lebesgue constant is made smaller. Advantages of the method are that it works for a general geometry Ω and that the point sets are nested. Numerical experiments show that the Lebesgue constant corresponding to the least squares operator is low and grows slower than polynomially in function of the total degree of the polynomial approximation space. It follows that the computed points are point sets of a weakly admissible mesh (WAM).
منابع مشابه
A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملFuzzy transform and least-squares approximation: Analogies, differences, and generalizations
This paper investigates the relations between the least-squares approximation techniques and the Fuzzy Transform. Assuming that the function f : R → R underlying a discrete data set D := {(xi, f(xi))}i=1 has been computed with interpolating or least-squares constraints, we prove that the Discrete Fuzzy Transform of the sets {f(xi)}i=1 and {f(xi)}i=1 is the same. This result shows that the Discr...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملCaratheodory-Tchakaloff Subsampling
We present a brief survey on the compression of discrete measures by Caratheodory-Tchakaloff Subsampling, its implementation by Linear or Quadratic Programming and the application to multivariate polynomial Least Squares. We also give an algorithm that computes the corresponding CaratheodoryTchakaloff (CATCH) points and weights for polynomial spaces on compact sets and manifolds in 2D and 3D. 2...
متن کاملLocating good points for multivariate polynomial approximation
Locating good points for multivariate polynomial approximation, in particular interpolation, is an open challenging problem, even in standard domains. One set of points that is always good, in theory, is the so-called Fekete points. They are defined to be those points that maximize the (absolute value of the) Vandermonde determinant on the given compact set. However, these are known analyticall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015